Remote Sensing of Atmospheric Aerosol Distributions Using Supervised Texture Classification
نویسنده
چکیده
This thesis presents a new technique to identify a 2D mask showing the extent of particulate aerosol distributions in satellite imagery. This technique uses a supervised texture classification approach, and utilises data from two distinct satellite sources. The vertical feature mask (VFM) product from the CALIPSO lidar, provides an accurate description of the aerosol content of the atmosphere but has a limited footprint and coverage. The CALIPSO VFM is used to provide training data in order to form classifiers to be applied to other imagery, namely data from the spinning enhanced visible and infrared imager (SEVIRI) on the MSG satellite. The output from the classification is a 2D mask representing the locations of the particulate aerosol of interest within the SEVIRI image. This approach has been demonstrated on test cases over land and ocean, and shows a good agreement with other techniques for the detection of particulate aerosol. However, the supervised texture approach provides outputs at a higher resolution than the existing methods and the same approach is applicable over land and ocean and therefore shows the advantages compared to the current techniques. Furthermore, the coverage of the approach can be further extended using signature extension and chain classification. Signature extension was applied to one of the test cases to monitor the same geographical region with temporal extension away from the initial supervised classification. The experiments showed that it was possible to extend the coverage for ±90 minutes from the original classification and indicates the possibility of greater extension over larger temporal windows.
منابع مشابه
A Highly Accurate Classification of TM Data through Correction of Atmospheric Effects
Atmospheric correction impacts on the accuracy of satellite image-based land cover classification are a growing concern among scientists. In this study, the principle objective was to enhance classification accuracy by minimizing contamination effects from aerosol scattering in Landsat TM images due to the variation in solar zenith angle corresponding to cloud-free earth targets. We have derive...
متن کاملEvaluation of Land Cover Changes Ysing Remote Sensing Technique (Case study: Hableh Rood Subwatershed of Shahrabad Basin)
The growing population and increasing socio-economic necessities creates a pressure on land use/land cover. Nowadays, land use change detection using remote sensing data provides quantitative and timely information for management and evaluation of natural resources. This study investigates the land use changes in part of Hableh Rood Watershed of Iran using Landsat 7 and 8 (Sensor ETM+ and OLI) ...
متن کاملApplication of remote sensing and geographical information system in mapping land cover of the national park
The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...
متن کاملCast Shadow Detection to Quantify the Aerosol Optical Thickness for Atmospheric Correction of High Spatial Resolution Optical Imagery
The atmospheric correction of optical remote sensing data requires the determination of aerosol and gas optical properties. A method is presented which allows the detection of the aerosol scattering effects from optical remote sensing data at spatial sampling intervals below 5 m in cloud-free situations from cast shadow pixels. The derived aerosol optical thickness distribution is used for impr...
متن کاملDetermination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)
According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012